WEBJan 1, 2007 · The support vector machines (SVM) model with multiinput and single output was proposed. Compared the predictor based on RBF neural networks with test datasets, the results show that the SVM ...
WhatsApp: +86 18203695377WEBA coal mine mantrip at Lackawanna Coal Mine in Scranton, Pennsylvania Coal miners exiting a winder cage at a mine near Richlands, ia in 1974 Surface coal mining in Wyoming, A coal mine in Frameries, Belgium. Coal mining is the process of extracting coal from the ground or from a mine. Coal is valued for its energy content and .
WhatsApp: +86 18203695377WEBAug 25, 2021 · Gas explosion has always been an important factor restricting coal mine production safety. The appliion of machine learning techniques in coal mine gas concentration prediction and early warning can effectively prevent gas explosion accidents. Nearly all traditional prediction models use a regression technique to predict gas .
WhatsApp: +86 18203695377WEBOct 22, 2021 · Appliion of Volume Detection Based on Machine Vision in Coal and Gangue Separation. October 2021. DOI: / Conference: 2021 IEEE 5th Conference on Energy Internet and ...
WhatsApp: +86 18203695377WEBSep 1, 2020 · Wang et al. [12] quickly analyzed the properties of coal based on support vector machine (SVM) classifier, improved PLS and nearinfrared reflectance the experiment, they first used the SVM classifier to construct a classifiion model for 199 coal samples, and then established a coal quality prediction .
WhatsApp: +86 18203695377WEBNov 1, 2020 · Simultaneous quantitative analysis of nonmetallic elements in coal by laserinduced breakdown spectroscopy assisted with machine learning. Author links open ... According to all data obtained in this work, it is reasonable to deduce conclude that LIBS technology based on and machine learning model could be a practical algorithm for .
WhatsApp: +86 18203695377WEBDec 15, 2021 · The subclass level classifiion also obtained good results with an accuracy of and F1 score of The results demonstrate the effectiveness of rapid coal classifiion systems based on DRS dataset in combination with different machine learningbased classifiion algorithms.
WhatsApp: +86 18203695377WEBDOI: / Corpus ID: ; Maceral groups analysis of coal based on semantic segmentation of photomicrographs via the improved Unet article{Lei2021MaceralGA, title={Maceral groups analysis of coal based on semantic segmentation of photomicrographs via the improved Unet}, author={Meng Lei and Rao .
WhatsApp: +86 18203695377WEBNov 1, 2021 · In this study, we developed an automatic Ppick quality control model based on machine learning to identify useable/unusable Ppicks. We used five waveform parameters, including signaltonoise ratio (SNR), signaltonoise variance ratio (SNVR), Pphase startingup slope ( K p ), shorttime zerocrossing rate (ZCR) and peak amplitude .
WhatsApp: +86 18203695377WEBJun 1, 2023 · Feng et al. (2015) proved that a support vector machine (SVM) could perform well in terms of accuracy to predict the gross calorific value (GCV) ... In this study, the GBRT model was used to predict the HHV of coal based on the proximate analysis data, and the model adopted optimal parameters selected through crossvalidation. ...
WhatsApp: +86 18203695377WEBMine work face gas emission quantity is an important mine design basis, which also has important practical significance for guide mine design, ventilation and safety production. Mine gas emission quantity and work face multi factors have complex nonlinear relationship. The paper built the work face gas emission prediction support vector .
WhatsApp: +86 18203695377WEBJan 30, 2014 · This paper presents a new online coal identifiion system based on support vector machine (SVM) to achieve online coal identifiion under variable combustion conditions.
WhatsApp: +86 18203695377WEBA coal mine mantrip at Lackawanna Coal Mine in Scranton, ... Technical and economic feasibility are evaluated based on the following: regional geological conditions; overburden characteristics; ... It is a sophistied machine with a rotating drum that moves mechanically back and forth across a wide coal seam. The loosened coal falls onto an ...
WhatsApp: +86 18203695377WEBMar 15, 2024 · The life cycle inventory of coal power generation in China was obtained from the CPLCID® (Chinese processbased life cycle inventory database, Zhang et al., 2016), which primarily includes an internationally peerreviewed inventory of subcritical, supercritical, and ultrasupercritical technologies for coal power generation (Hong et al., .
WhatsApp: +86 18203695377WEBSep 1, 2023 · With the trend of localization of imported coal machine reducers being imperative, the traditional reducer development method has the problems of a high failure rate in the design stage, a long development cycle, and high manufacturing costs. Based on reverse engineering, this paper discusses the process of localization and .
WhatsApp: +86 18203695377WEBApr 1, 2023 · Fig. 1 compares the surface state differences of coal and gangue in various situations based on the proposed model. In the ideal laboratory environment, the light intensity is high, the coal and gangue image acquisition process is simple, and the camera receives more light signals, so it is easy to distinguish coal and gangue; however, in the .
WhatsApp: +86 18203695377WEBBecause of its complex working environment, most coal mines take belt conveyor as the main transportation equipment. However, in the process of transportation, due to longtime and highintensity operation, the belt is very easy to be damaged by gangue, iron and other foreign matters doped in coal, resulting in unnecessary losses. Foreign objects in the .
WhatsApp: +86 18203695377WEBSep 1, 2023 · With the trend of localization of imported coal machine reducers being imperative, the traditional reducer development method has the problems of a high failure rate in the design stage, a long development cycle, and high manufacturing costs. ... Liu X 2020 Research on coal machine spare parts localization based on 3D measurement .
WhatsApp: +86 18203695377WEBMar 10, 2017 · Gross calorific value (GCV) is one the most important coal combustion parameters for power plants. Modeling of GCV based on coal properties could be a key for estimating the amount of coal consumption in the combustion system of various plants. In this study, support vector regression (SVR) as a powerful prediction method has been .
WhatsApp: +86 18203695377WEBJul 4, 2023 · Based on a particle swarm optimization algorithm and two machine learning algorithms, BP neural network and random forest, a prediction model of tar yield from oilrich coal is constructed in this ...
WhatsApp: +86 18203695377WEBDOI: / Corpus ID: ; Experimental analysis of vibratory screener efficiency based on density variation for screening coal and iron ore article{Shanmugam2023ExperimentalAO, title={Experimental analysis of vibratory screener efficiency based on density variation for screening coal and iron ore}, .
WhatsApp: +86 18203695377WEBAbstract. Read online. The classifiion of surrounding rock stability of coal roadway has important theoretical and practical significance for the design, construction and management of onsite rock mass paper selected seven key indexes that affect the surrounding rock stability of coal roadway, collected the samples through field .
WhatsApp: +86 18203695377WEBThis paper presents a novel coal mill modeling technique using genetic algorithms (GA) based on routine operation data measured onsite at a National Power (NP) power station, in England, The work focuses on the modeling of an Etype vertical spindle coal mill. The model performances for two different mills are evaluated, covering a whole range of .
WhatsApp: +86 18203695377WEBDOI: / Corpus ID: ; Coal structure identifiion based on geophysical logging data: Insights from Wavelet Transform (WT) and Particle Swarm Optimization Support Vector Machine (PSOSVM) algorithms
WhatsApp: +86 18203695377WEBTherefore, this manuscript proposes a new identifiion method of surface cracks from UAV images based on machine learning in coal mining areas. First, the acquired UAV image is cut into small subimages, and divided into four datasets according to the characteristics of background information: Bright Ground, Dark Dround, Withered .
WhatsApp: +86 18203695377WEBJan 4, 2024 · Cocombustion of coal and biomass has the potential to reduce the cost of power generation in plants. However, because of the high content of the alkali metal of biomass ash, cocombustion of these two fuels leads to unpredictable ash fusion temperature (AFT). This study conducted experiments to measure the AFT of straw, .
WhatsApp: +86 18203695377WEBNov 1, 2021 · In this study, we developed an automatic Ppick quality control model based on machine learning to identify useable/unusable Ppicks. ... Pd, and As in bulk metallurgical or coalbased solid waste greatly surpasses the standard levels. Nevertheless, by mixing such waste within the coal mine backfill materials, the resulting .
WhatsApp: +86 18203695377WEBDec 23, 2022 · failure of coal, coal bursting liability (CBL) is the basis of the research on the early warning and prevention of coal burst. T o accurately classify the CBL level, the supportvectormachine (SVM)
WhatsApp: +86 18203695377